بیوتکنولوژی صنعتی Industrial Biotechnology

این وبلاگ محلی برای به اشتراک گذاردن یافته ها و دانسته های علوم بیوتکنولوژیست

بیوتکنولوژی صنعتی Industrial Biotechnology

این وبلاگ محلی برای به اشتراک گذاردن یافته ها و دانسته های علوم بیوتکنولوژیست

«رویان» درانتظارتولد گاوهای داروساز!

«رویان» درانتظارتولد گاوهای داروساز!  رییس پژوهشکده «رویان» جهاد دانشگاهی با اشاره به دو دستاورد جدید محققان پژوهشکده اظهار کرد: با این دستاوردها اتوبان بزرگی برای انجام تحقیقات پیش روی محققان کشور باز شده است. 

دکتر حمید گورابی در گفت‌وگو با خبرنگار «پژوهشی» خبرگزاری دانشجویان ایران (ایسنا)، با بیان این‌که سلول‌های بنیادی دارای سه دسته هستند، گفت: سلول‌های بنیادی جنینی، سلول‌های بنیادی بالغ که در مغز استخوان موجود هستند و گروه سوم سلول‌های بنیادی خون بند ناف است. 



وی درباره سلول‌های بنیادی جنینی گفت: این سلول‌ها چون از منشا جنین بوده امکان دارد به لحاظ انطباق بافتی با بیمار نیازمند به پیوند منطبق نباشند. به عنوان مثال زمانی که کلیه را پیوند می‌زنند، باید ابتدا به لحاظ بافتی بررسی شود تا این که مطابق با بافت گیرنده هم باشد چون در صورت عدم وجود سازگاری بافتی، عضو دفع خواهد شد. 

رییس پژوهشکده رویان با بیان این‌که سلول‌های بنیادی جنینی که از قبل در دنیا موجود بودند، با بیماران نیازمند، انطباق ندارند، تصریح کرد: از این رو باید روشی کشف می‌شد تا این انطباق به وجود بیاید و تا پیش از این شبیه‌سازی درمانی بوده که به لحاظ بازده کم و مشکلات اخلاقی چندان قابل استفاده نبوده است. 

وی با اشاره به موفقیت اخیر محققان رویان در استفاده از سلول‌های پوست برای دستیابی به سلولی شبیه به سلول‌های بنیادی جنین با استفاده از روش‌های مهندس ژنتیک توضیح داد: این امر باعث می‌شود تا بیمار یک رده سلولی بنیادی جنینی مربوط به خود را داشته باشد تا بتوان آن را به هر بافت مورد نیاز تمایز داد؛ به عنوان مثال برای بیمار کبدی ابتدا فیبروپلاست پوست را کشت داده و به سلول بنیادی پرتوان تبدیل می‌کنیم و در نهایت به سلول کبدی تمایز داده و پیوند صورت می‌گیرد. 

رییس پژوهشکده رویان خاطرنشان کرد: به دلیل این که این سلول‌ها از بافت بدن بیمار است، دفع صورت نخواهد گرفت. 

دکتر گورابی در عین حال با تاکید بر این که این روش در مرحله‌ای نیست که بتوان آن را بر روی تمامی بیماران استفاده کرد به ایسنا گفت: این فن‌آوری در دسترس ماست و به محققان پژوهشکده گفته‌ام که امروز یک اتوبان بزرگی برای ما باز شده که می‌توان در آن تحقیقات و کارهای جدید را شروع کرد و این امر منوط به این است که افرادی که بودجه و امکانات در اختیارشان است، پول بدهند تا این که ما خودروهای خوب بخریم تا در این اتوبان رانندگی کنیم در غیر این صورت بلا استفاده خواهد ماند. 

وی با بیان این‌که ما از مهندسی ژنتیک با استفاده از ویروس‌ها استفاده می‌کنیم، یادآورشد: باید روش‌هایی را ابداع کنیم که به روش غیر ویروسی این کار را انجام دهیم و محققان پژوهشکده این کار را شروع کرده‌اند و در صورت تحقق این امر خیلی زودتر به پیوند سلول‌های بنیادی جنینی دست می‌یابیم. 

رییس پژوهشکده رویان جهاد دانشگاهی با اشاره به این‌که محققان پژوهشکده در حال بررسی انتخاب یک بیماری صعب‌العلاج برای امکان تولید سلول‌های پرتوان القایی از بیماران صعب العلاج هستند، گفت: چنانچه بتوان از این گونه بیماران، لاین‌های سلولی بنیادی جنینی تولید کرد، اولا می‌توان درباره مکانیزم بیماری مطالعه و شناخت حاصل کرد و دوما در آینده برای ژن درمانی از آن ها بهره برد و سپس همین سلول‌ها را به سلول‌های مورد نیاز بیمار تبدیل و پیوند زد. 

دکتر گورابی با بیان این‌که ساختمان قبلی رویان به مرکز سلول درمانی تبدیل شده است، عنوان کرد: امیدواریم با راه‌اندازی این مرکز بتوانیم از روش‌هایی که به مرحله درمان بیماران رسیده، خدمات ارائه دهیم. 

گفتنی است، با تلاش محققان جهاد دانشگاهی تنها در مدت نه ماه پس از ارایه مقالات تولید سلول‌های پرتوان القایی (IPS) در مجلات معتبر دنیا، جمهوری اسلامی ایران بعد از کشورهای آمریکا، ژاپن، آلمان و چین به این فن‌آوری نوین دست یافت. 

در این فرآیند سلول‌های پوست موش و انسان با کمک انتقال ژن‌های موردنظر باز برنامه‌ریزی شده به سلول‌های بنیادی پرتوان القایی که شبیه سلول‌های بنیادی جنینی هستند، تبدیل شدند که با توجه به تجربه پژوهشکده رویان در این زمینه این موضوع سبب توان مضاعف محققان در تولید سریعتر این سلول‌ها شده است. 

تولید سلول‌های پرتوان القایی، علاوه بر اینکه بسیاری از مشکلات مربوط به کاربردی کردن سلول‌های بنیادی جنینی را مرتفع می‌سازد، می‌تواند در بحث ژن درمانی، توسعه داروسازی، ناهنجاری شناسی جنین‌ها و مطالعه عملکرد ژن‌ها نیز موثر باشد. ضمن اینکه دانشمندان در حال بررسی امکان تولید سلول‌های پرتوان القایی از بیماران صعب العلاج و دچار نقص ژنتیکی هستند تا با تمایز این سلول‌ها به سلول‌های موردنیاز بیماران، برای درمان آنها اقدام کنند. 

فرآیند تولید سلول ‌های بنیادی پرتوان القایی نوعی بازبرنامه‌ریزی سلول است که بدون تخریب جنینی که خود موضوعی بحث برانگیز در تولید سلول‌های بنیادی جنینی است، صورت می‌گیرد و این کشف علمی دانشمندان را به رویای ترمیم اندام قطع شده و معیوب بدون تخریب جنینی نزدیک می‌کند. 

به گزارش ایسنا، محققان پژوهشکده رویان جهاد دانشگاهی با توجه به اهمیت بیماری‌های عصبی، خونی، دیابتی و کبد و همچنین توان تولید این سلول‌ها از سلول‌های بنیادی جنینی ، در حال اجرای طرح‌هایی هستند که در آنها بتوانند برای گروهی از بیماران مزبور سلول‌های بنیادی پرتوان القایی ایجاد کنند تا در آینده با کاربردی شدن این سلول‌ها برای درمان این بیماران اقدام کنند. 

دکتر گورابی در ادامه در توضیح دستاورد دیگر محققان پژوهشکده رویان در تولید و انتقال جنین‌های حاوی ژن تولید داروی درمان سکته قلبی (tPA) نیز اظهار کرد: داروی tPA در حال حاضر بهترین داروی درمان و نیز پیشگیری سکته قلبی محسوب می‌شود که به علت قیمت فوق العاده بالا، استفاده عمومی آن امکان‌پذیر نیست و تحقق این فن‌آوری، کشور را یک گام دیگر به هدف نهایی تولید فراوان و ارزان قیمت داروهای پروتئینی خاص از طریق فرآورده شیر دام‌های تراریخته نزدیک می‌کند. 

دکر گورابی تصریح کرد: در حال حاضر محققان پژوهشکده رویان جهاد دانشگاهی توانسته‌اند با تلفیق فن‌آوری‌های یاد شده، مراحل تولید و انتقال اولین جنین‌های تراریخته حاوی ژن تولید داروی tPA را با موفقیت پشت سر بگذارند که امید است با اجرای این پروژه در ابعاد وسیع به زودی شاهد تولد نخستین گاو تراریخته با توان تولید داروی tPA در شیر این گاو باشیم. 

رییس پژوهشکده رویان در گفت‌و‌گو با ایسنا خاطرنشان کرد: در این طرح جنین‌هایی که ترانس ژن بودند به گاو انتقال داده‌ایم و منتظر جواب حاملگی حیوان هستیم، زیرا جواب حاملگی در حیوانات سخت حاصل می شود. همچنین با مذاکراتی که با دامپروری تامین اجتماعی (فوکا) شده در ماه برای 10 گاو ماده جنین انتقال می دهیم. 

دکتر گورابی در پایان تاکید کرد: هرچه بودجه بیشتری در اختیار مراکزی که توانایی خود را نشان داده‌اند، قرار گیرد، پیشرفت‌های علمی بیشتری حاصل خواهد شد.

Biofuels, the Next Generation

Biofuels, the Next Generation 
By CARMELO RUIZ-MARRERO 

The promotion of biofuels is a central component of president Obama's energy policy. But biofuel crops, which are mostly corn, sugar cane, oil palm and soy, are in big trouble because of the overwhelming and continuously growing evidence of the environmental harm that they cause. And besides, all large-scale industrial agriculture requires large amounts of fossil fuel, so biofuels are hardly a cure for petroleum addiction.

The Obama administration and an increasing number of biofuel supporters acknowledge these problems but they wager that these will be solved by a new generation of biofuels made from cellulose.

And what's so great about cellulose? For one, it is everywhere. Cellulose is the most common organic compound on earth and a key structural component of the cell walls of green plants and many forms of algae. About one third of all plant matter in the world is cellulose. 

In spite of the best efforts of scientists, the cellulose molecule stubbornly resists all cost-effective attempts at transforming it into fuel. So they are now looking to nature for answers: fungi and certain bacteria found in the guts of termites and ruminant mammals (such as cows) that produce enzymes that can digest cellulose. 

The ability to turn cellulose into fuel would make it possible to use any vegetable matter, living or dead, to this end- corn stalks, suburban lawn clippings, dead wood, you name it. According to their enthusiastic supporters, the main advantage of cellulose-based fuels is that they will not compete with food crops. You can get a Nobel prize for less than this.

And that's where biotechnology comes in. The biotech industry proudly claims to be a major player in both the energy business and global warming prevention strategies by virtue of its cutting edge research and development into, among other things, cellulose biofuels.

The president's cabinet is equal to the task. When he was Iowa governor, current agriculture secretary Tom Vilsack was named Governor of the Year 2001 by the Biotechnology Industry Organization for his passionate defense of the biotech industry and its products. And energy secretary Steven Chu was the main architect of a controversial $500 million dollar deal between the BP corporation and the University of California's Berkeley campus. This money, a sum that has no precedent in the history of academia, will be used to develop novel biofuels through biotechnology.

But some scientists and environmentalists warn that the cellulose boom will in no way solve the problems of the current generation of biofuels, and in fact will create new ones.

Last January a coalition of diverse groups, that included Food First and the Institute for Social Ecology, issued an open letter that denounced biofuels as a false solution to global warming and specifically contested the assertion that cellulose-based fuel production will not compete with food production. 

The open letter's basic arguments are not new at all. Back in 2007 a group of eleven non-governmental organizations, from countries such as Argentina, Indonesia and Denmark, produced a report titled “Agrofuels: Towards a Reality Check”. The document was particularly emphatic in warning that using so-called agriculture “waste” to meet global energy needs is not a smart idea at all.

What the numerous objections to the biofuels revolution- whether the current generation or yet-to-exist biotech fuels- come down to is that the feedstock for this energy source must come from somewhere. Looking at the promo literature for new generation biotech biofuels one gets the impression that these are made out of thin air. But the fact is that all those fuels come from organisms, hence the prefix “bio”. And all those organisms, whether they be farm crops or engineered microbes, ultimately need to be nourished with physical inputs like nutrients and water, which are not cheaply available. They are renewable but not infinite.

So how much raw material would the cellulose boom require? The U.S. Departments of Energy and Agriculture set out to find the answer and in 2005 issued a joint report which concluded that the use of wood, grasses, and "plant waste" for the production of cellulosic ethanol would require 1.3 billion tons of dry biomass a year. Obtaining this amount would be possible only by removing most of the country's agricultural residues, planting an area three times the size of Missouri with perennial cellulose-rich crops like switchgrass, and putting all U.S. farmland under "no-till" agriculture, say the report's authors. 

In these times of economic and ecological collapse it is hard not to get carried away by the lure of technological quick fixes, like biofuels. I beg to differ from most renewable energy advocates: this is not a matter of “bad” non-renewable energy sources vs. “good” renewable ones. The ultimate root problem behind environmental catastrophe and the energy crisis is the voracious and ever-increasing energy demand, which unfortunately many environmentalists and eco-entrepreneurs have come to accept as a given. 

Rather than jumping headlong into a dubious biofuels revolution, our best bet for survival will be the realization that increased energy consumption and higher standards of living are not synonymous.

Carmelo Ruiz-Marrero, a self-described renaissance hack and impractical humanist, is a Puerto Rican journalist, environmental educator and author. He is as Senior Fellow of the Environmental Leadership Program, a Fellow of the Oakland Institute, and directs the Puerto Rico Project on Biosafety (http://bioseguridad.blogspot.com/). Whenever he is not writing or working at a call center, he distributes farm produce for something that resembles a CSA. Ruiz-Marrero, a compulsive blogger, blogs away at: http://carmeloruiz.blogspot.com/

My confusion over PCR

yah...
let me say that it is getting hard time for me ,because i am suppose to carry out a PCR for Trp1 gene (from baker´s yeast) and i have not been successful since last 4 weeks.
i almost made every trial and erorr methods.but....
i dont know ,maybe i design the wrong primer.
The question is ,if i already changed all the variables (solution concentrations and annealing temp,.....), doesn't that mean i have somethong wrong with my primers?
The more i search i get results which serve me up more twaddle. Frankly speaking , that's ludicrous.
But at least i enhanced my learning experience ....

New tech. could make ethanol from almost every waste by 2010

Researchers from the Texas Engineering Experiment Station (TEES) and Byogy Renewables say that a new technology could turn everyday waste into petrol as early as 2010. The process makes converting biomass to high-octane petrol possible, and might be the only integrated system that converts biomass directly to petrol. Most other emerging processes convert the biomass into alcohol and then blend it with petrol. The system is relatively inexpensive and focuses on using biomass waste streams and non-food energy crops rather than food products such as corn. TEES says that the cost of such a conversion would probably be between $1.70 and $2.00 (€1.17 -1.38) per gallon excluding all subsidies and tax credits, with the cost depending on the type and cost of feedstock as well as the size of the biorefinery.'This technology is important because it addresses many issues: eliminating waste, producing economical fuel quickly and being friendly to our environment,' Kenneth Hall, associate director of TEES, comments. 'This technology is ready to be commercialized now and does not require any new scientific or technological breakthroughs to become a reality.'Byogy has licensed the process and hopes to have a plant using the technology up and running within 18 months to two years.
ref:http://www.makebiofuel.co.uk/forum/viewtopic.php?f=2&t=55

The Misunderstood Gene by Michel Morange - قسمت اول

کتاب The Misunderstood Gene را امروز از کتابخونه دانشگاه امانت گرفتم.

نویسندش یه دانشمند فرانسویه به نام  Michel Morange

کتاب جالبیه وMichel Morange سعی داره یه دیدگاه جدیدی را به خواننده در خصوص زیست شناسی ملکولی القاء کنه.

نویسنده در این کتاب تصور عمومی را درخصوص ژنها به چالش می کشونه و ادعا می کنه این تصور از ژنها منسوخ و کهنه شده.

در ادامه بیشتر می نویسم.

بدررود

Colony hybridization

Colony hybridization: a method for the isolation of cloned DNAs that contain a specific geneM Grunstein and D S Hogness 
Abstract
A method has been developed whereby a very large number of colonies of Escherichia coli carrying different hybrid plasmids can be rapidly screened to determine which hybrid plasmids contain a specified DNA sequence or genes. The colonies to be screened are formed on nitrocellulose filters, and, after a reference set of these colonies has been prepared by replica plating, are lysed and their DNA is denatured and fixed to the filter in situ. The resulting DNA-prints of the colonies are then hybridized to a radioactive RNA that defines the sequence or gene of interest, and the result of this hybridization is assayed by autoradiography. Colonies whose DNA-prints exhibit hybridization can then be picked from the reference plate. We have used this method to isolate clones of ColE1 hybrid plasmids that contain Drosophila melanogaster genes for 18 and 28S rRNAs. In principle, the method can be used to isolate any gene whose base sequence is represented in an available RNA

New Gene Found That Helps Plants Beat The Heat

New Gene Found That Helps Plants Beat The Heat
NeScienceDaily (Oct. 14, 2008) — Michigan State University plant scientists have discovered another piece of the genetic puzzle that controls how plants respond to high temperatures. That may allow plant breeders to create new varieties of crops that flourish in warmer, drier climatesw Gene Found That Helps Plants Beat The Heat.
The MSU researchers found that the gene bZIP28 helps regulate heat stress response in Arabidopsis thaliana, a member of the mustard family used as a model plant for genetic studies. This is the first time bZIP28 has been shown to play a role heat tolerance. The research is published in the Oct. 6 issue of the Proceedings of the National Academy of Sciences.
"We also found that bZIP28 was responding to signals from the endoplasmic reticulum, which is the first time the ER has been shown to be involved with the response to heat," said Robert Larkin, MSU assistant professor of biochemistry and molecular biology and corresponding author of the paper. "We're finding that heat tolerance is a more complex process than was first thought."
Previous research has shown that the nucleus, the "brain" of the cell, and cytosol, the fluid inside cells, play a role in how plants respond to heat. The endoplasmic reticulum, a membrane in the cell that consists of small tubes and sac-like structures, is mainly responsible for packaging and storing proteins in the cell.
According to Christoph Benning, MSU professor of biochemistry and molecular biology and a member of the research team, the scientists were looking for genes that turn other genes on and off and are tied to cell membranes. These membrane-tethered gene switches are seen in animals but hadn't been studied in great detail in plants.
"The bZIP28 protein is anchored in the endoplasmic reticulum, away from its place of action," Benning explained. "But when the plant is stressed by heat, one end of bZIP28 is cut off and moves into the nucleus of the cell where it can turn on other genes to control the heat response. Understanding how the whole mechanism works will be the subject of more research."
Plants with an inactive bZIP28 gene die as soon as temperatures reach a certain level.
Other scientists on the research team are Federica Brandizzi, MSU associate professor of plant biology and member of the Plant Research Lab, and Hangbo Gao, former MSU post-doctoral research associate.
The work was sponsored by the MSU-DOE Plant Research Lab. Benning's research also is supported by the Michigan Agricultural Experiment Station.

Scientists Trigger Cancer-like Response From Embryonic Stem Cells
ScienceDaily (Oct. 13, 2008) — Scientists from The Forsyth Institute, working with collaborators at Tufts and Tuebingen Universities, have discovered a new control over embryonic stem cells' behavior. The researchers disrupted a natural bioelectrical mechanism within frog embryonic stem cells and trigged a cancer-like response, including increased cell growth, change in cell shape, and invasion of the major body organs. This research shows that electrical signals are a powerful control mechanism that can be used to modulate cell behavior.
The team of Forsyth Institute scientists, led by Michael Levin, Ph.D., Director of the Forsyth Center for Regenerative and Developmental Biology, have identified a new function for a potassium (KCNQ1) channel, mutations of which are known to be involved in human genetic diseases such as Romano-Ward and Jervell-Lange-Nielsen syndromes. The team interrupted the flow of potassium through KCNQ1 in parts of the Xenopus frog embryo. This resulted in a striking alteration of the behavior of one type of embryonic stem cell: the pigment cell lineage of the neural crest. When mutated, these pigment cells over-proliferate, spread out, and become highly invasive of blood vessels, liver, heart, and neural tube, leading to a deeply hyper-pigmented tadpole.
The body's natural biophysical signals, driven by ion transporter proteins and resulting in endogenous voltage gradients and electric fields, have been implicated in embryonic development and regeneration. The data in this study, which will be published in the Proceedings of the National Academy of Sciences on October 13, 2008, have not only elucidated a novel role for the KCNQ1 channel in regulating key cell behaviors, but for the first time have also revealed the molecular identity of a biophysical switch by means of which neoplastic-like properties can be conferred upon a specific embryonic stem cell sub-population. These data reveal that key properties of embryonic stem cells can be controlled through bioelectrical signals, identify transmembrane voltage potential as a novel regulator of neural crest function in embryonic development, and demonstrate that potassium flows can be an important aspect of cellular environment, which is known to regulate both cancer and stem cells.
"In regenerative medicine, a key goal is to control the number, position, and type of cells," said the paper's first author, Junji Morokuma, Ph.D. "This research is especially exciting because it shows the importance of electrical signals for changing cell behavior, identifies a new role in developmental and cell biology for the KCNQ1 ion channel, and strengthens the link between stem cells and tumor cells. Added Doug Blackiston, Ph.D., paper co-author, "In the future, this work may lead to a greater understanding of the causes of cancer and ways to potentially halt its metastasis, as well as suggesting new techniques by which stem cells may be controlled in biomedical applications."
Michael Levin, Ph.D., is a Senior Member of the Staff in The Forsyth Institute and the Director of the Forsyth Center for Regenerative and Developmental Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his group examine the processes governing large-scale pattern formation and biological information storage during animal embryogenesis. The lab investigates mechanisms of signaling between cells and tissues that allow a living system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.
This work was supported by grants from The National Institutes of Health, The American Heart Association, The National Highway Traffic Safety Administration and the March of Dimes 

i got this article from Mrs.S.M